f07 — Linear Equations (LAPACK) f07nve

NAG C Library Function Document

nag_zsyrfs (f07nvc)

1 Purpose

nag_zsyrfs (f07nvc) returns error bounds for the solution of a complex symmetric system of linear
equations with multiple right-hand sides, AX = B. It improves the solution by iterative refinement, in
order to reduce the backward error as much as possible.

2 Specification

void nag_zsyrfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs,
const Complex a[], Integer pda, const Complex af[], Integer pdaf,
const Integer ipiv[], const Complex b[], Integer pdb, Complex x[],
Integer pdx, double ferr[], double berr[], NagError *fail)

3 Description

nag_zsyrfs (f07nvc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex symmetric system of linear equations with multiple right-hand sides AX = B. The
function handles each right-hand side vector (stored as a column of the matrix B) independently, so we
describe the function of nag_ zsyrfs (f07nvc) in terms of a single right-hand side b and solution .

Given a computed solution x, the function computes the component-wise backward error B. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+6A)xr=0b+ b
|6a;j| < Bla;;| and [6b;| < B[by].
Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — Z;|/ max |z,
1 1

where z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint. order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A is to be
factorized, as follows:

[NP3645/7] f07nve. 1

f07nve NAG C Library Manual

if uplo = Nag _Upper, the upper triangular part of A is stored and A is factorized as
PUDUT P”, where U is upper triangular;

if uplo = Nag_Lower, the lower triangular part of A is stored and A is factorized as
PLDLTPT, where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: a[dim] — const Complex Input
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

On entry: the n by n original symmetric matrix A as supplied to nag_zsytrf (f07nrc).

6: pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array a.

Constraint: pda > max(1,n).

7: af{dim] — const Complex Input
Note: the dimension, dim, of the array af must be at least max(1, pdaf x n).

On entry: details of the factorization of A, as returned by nag_zsytrf (f07nrc).

8: pdaf — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array af.

Constraint: pdaf > max(1,n).

9: ipiv[dim| — const Integer Input
Note: the dimension, dim, of the array ipiv must be at least max(1,n).
On entry: details of the interchanges and the block structure of D, as returned by nag zsytrf
(f07nrc).

10: b[dim| — const Complex Input

Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1,pdb x n) when order = Nag_ RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix B is stored in b[(i — 1) x pdb + 5 — 1].

On entry: the n by r right-hand side matrix B.

11: pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

f07nve.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07nve

Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).

12: x[dim] — Complex Input/Output
Note: the dimension, dim, of the array x must be at least max(1,pdx x nrhs) when
order = Nag_ColMajor and at least max(1, pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) X pdx + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + j — 1].
On entry: the n by r solution matrix X, as returned by nag_zsytrs (f07nsc).

On exit: the improved solution matrix X.

13: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag RowMajor, pdx > max(1, nrhs).

14: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...,n

15 berr[dim| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).

On exit: berr[j — 1] contains the component-wise backward error bound 3 for the jth solution
vector, that is, the jth column of X, for j=1,2,...,n.

16: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdaf = (value).
Constraint: pdaf > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.

[NP3645/7] 07nve.3

f07nve NAG C Library Manual

NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

On entry, pdaf = (value), n = (value).
Constraint: pdaf > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n” real floating-
point operations. Each step of iterative refinement involves an additional 24n* real operations. At most 5
steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b;
the number is usually 5 and never more than 11. Each solution involves approximately 8n? real
operations.

The real analogue of this function is nag_dsyrfs (f07mhc).

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

—0.39 - 0.71% 514 —-0.64: —7.86 —2.96¢ 3.80 +0.92¢
5.14 — 0.64¢ 8.86 4 1.817 —3.52+0.58¢ 5.32—-1.59%
—7.86 —296i —3.52+40.58¢ —2.83 —0.03: —1.54 —2.86:
3.80 4 0.92¢ 532 —-159% —-154-2861 —0.56+40.12%

A:

and

07nve.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

—55.64 +41.22¢
—48.18 + 66.00¢
—0.49 —
—6.43 +19.244

B:

1.47:

f07nvce

—19.09 —35.97¢
—12.08 —27.02¢
6.95 +20.49¢
—4.59 —35.53%

Here A is symmetric and must first be factorized by nag_ zsytrf (f07nrc).

9.1 Program Text

/* nag_zsyrfs (£07nvc) Example Program.

*

* Copyright 2001 Numerical Algorithms Group.

*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/

Integer i, j, n, nrhs, pda, pdaf, pdb, pdx;

Integer ferr_len, berr_len;
Integer exit_status=0;
Nag_UploType uplo_enum;
NagError fail;

Nag_OrderType order;

/* Arrays */

Integer *xipiv=0;

char uplo([2];

Complex *a=0, *af=0, *b=0, *x=0;
double *berr=0, *ferr=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al[(J-1)*pda + I - 1

#define AF(I,J) af[(J-1)*pdaf + I

#define B(I,J) b[(J-1)*pdb + I -

#define X(I,J) x[(J-1)*pdx + I -
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1

#define AF(I,J) af[(I-1)*pdaf + J

#define B(I,J) b[(I-1)*pdb + J - 1

#define X(I,J) x[(I-1)*pdx + J - 1
order = Nag_RowMajor;

#endif

INIT FAIL(fail);

Vprintf ("f07nvc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*[*\n] ");

Vscanf ("%$1d%1ds*["\n] ", &n, &nrhs);

#ifdef NAG_COLUMN_MAJOR

pda = n;
pdaf = n;
pdb = n;
pdx = n;
#else
pda = n;
pdaf = n;
pdb = nrhs;
pdx = nrhs;
#endif
[NP3645/7]

f07nve.5

f07nve

ferr_len
berr_len =

nrhs;
nrhs;

/* Allocate memory */

if (!(ipiv = NAG_ALLOC (n,
a = NAG_ALLOC(n * n, Complex)) |
af = NAG_ALLOC(n * n, Complex)) |
b = NAG_ALLOC(n * nrhs, Complex)) ||

x = NAG_ALLOC(n * nrhs, Complex)) ||
berr = NAG_ALLOC(berr_len, double)) ||
ferr = NAG_ALLOC(ferr_len, double)))

Integer)) |

1 (
1 (\
1 (
1 (
1 (
1(

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Read A and B from data file,

Vscanf (" '/
if

$1ls 's*["\n] ", uplo);
(* (unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower;

else if (#*(unsigned char *)uplo == 'U’)
uplo_enum = Nag_Upper;

else
{

NAG C Library Manual

and copy A to AF and B to X */

Vprintf ("Unrecognised character for Nag_UploType type\n");

exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,j).im);
¥
Vscanf ("sx[*\n] ");
}
else
{
for (i1 = 1; 1 <= n; ++1)
{
for (3 = 1; j <= 1i; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,]).im);
¥
Vscanf ("s*[*\n] ");
}
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,Jj).im);
}
Vscanf ("$*[*\n] ");
/* Copy A to AF and B to X */
if (uplo_enum == Nag_Upper)
{
for (1 = 1; 1 <= n; ++1)
{
for (j = 1i; j <= n; ++3j)
{
AF(i,3).re = A(i,]).re;
AF(i,3).im = A(i,]J).im;
}
¥
}
else
{
for (1 = 1; 1 <= n; ++1)
{
f07nvc.6 [NP3645/7]

f07 — Linear Equations (LAPACK)

for (j = 1; j <= 1i; ++3)

AF(i,j).re = A(i,j).re;
AF(i,j).im = A(i,J).im;

}
}
}
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++j)
{
X(i,j).re = B(i,]J).re;
X(i,3).im = B(i,j).im;
}
}

/* Factorize A in the array AF */
fO07nrc(order, uplo_enum, n, af, pdaf, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07nrc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Compute solution in the array X */
fO07nsc(order, uplo_enum, n, nrhs, af, pdaf, ipiv, x, pdx,

&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07nsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Improve solution, and compute backward errors and */

/* estimated bounds on the forward errors */

fO07nvc(order, uplo_enum, n, nrhs, a, pda, af, pdaf, ipiv,
b, pdb, x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7nvc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Print solution */
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,

Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,

0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++3j)
Vprintf ("$1l.1le%s", berr[j-1], j%4 == 0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds "
"(machine-dependent)\n") ;
for (j = 1; j <= nrhs; ++j)

Vprintf ("$1l.1le%s", ferr[j-1]1, j%4 == 0 2"\n":" ");

Vprintf ("\n") ;
END:

if (ipiv) NAG_FREE (ipiv) ;

if (a) NAG_FREE(a);

if (af) NAG_FREE (af);

if (b) NAG_FREE (b);

if (x) NAG_FREE (x);

if (berr) NAG_FREE (berr);

if (ferr) NAG_FREE(ferr);
return exit_status;

[NP3645/7]

f07nvce

f07nve.7

f07nve

NAG C Library Manual

9.2 Program Data

fO07nvc Example Program Data

4 2

ILI

-0.39,-0.71)
5.14,-0.64) (

-7.86,-2.96) (
3.80, 0.92) (

-55.64, 41.22)

-48.18, 66.00)
-0.49, -1.47)

)

(
(
(
(
(
(
(
(-6.43, 19.24

:Values of N and NRHS
:Value of UPLO

6, 1.81)

2, 0.58) (-2.83,-0.03)

2,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A

-19.09,-35.97)

-12.08,-27.02)
6.95, 20.49)
-4.59,-35.53)

.8
.5
.3

~~—~—~ Ul W ®

:End of matrix B

9.3 Program Results

f07nvc Example Program Results

Solution(s)

1 (1.0000,-1.
2 (-2.0000, 5.
3 (3.0000,-2.
4 (-4.0000, 3.

Backward errors
1.0e-16

1 2
0000) (-2.0000,-1.0000)
0000) (1.0000,-3.0000)
0000) (3.0000, 2.0000)
0000) (-1.0000, 1.0000)

(machine-dependent)
6.7e-17

Estimated forward error bounds (machine-dependent)

1.2e-14

1.2e-14

f07nve.8 (last)

[NP3645/7]

	f07nvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	nrhs
	a
	pda
	af
	pdaf
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

